Molecular tuning of fast gating in pentameric ligand-gated ion channels.

نویسندگان

  • Thomas Grutter
  • Lia Prado de Carvalho
  • Virginie Dufresne
  • Antoine Taly
  • Stuart J Edelstein
  • Jean-Pierre Changeux
چکیده

Neurotransmitters such as acetylcholine (ACh) and glycine mediate fast synaptic neurotransmission by activating pentameric ligand-gated ion channels (LGICs). These receptors are allosteric transmembrane proteins that rapidly convert chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with an extracellular agonist-binding domain (ECD), triggering a tertiary/quaternary conformational change in the protein that results in the fast opening of an ion pore domain (IPD). However, the molecular mechanism that determines the fast opening of LGICs remains elusive. Here, we show by combining whole-cell and single-channel recordings of recombinant chimeras between the ECD of alpha7 nicotinic receptor (nAChR) and the IPD of the glycine receptor (GlyR) that only two GlyR amino acid residues of loop 7 (Cys-loop) from the ECD and at most five alpha7 nAChR amino acid residues of the M2-M3 loop (2-3L) from the IPD control the fast activation rates of the alpha7/Gly chimera and WT GlyR. Mutual interactions of these residues at a critical pivot point between the agonist-binding site and the ion channel fine-tune the intrinsic opening and closing rates of the receptor through stabilization of the transition state of activation. These data provide a structural basis for the fast opening of pentameric LGICs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

String method solution of the gating pathways for a pentameric ligand-gated ion channel.

Pentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-ene...

متن کامل

Gating of pentameric ligand-gated ion channels: structural insights and ambiguities.

Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic communication by converting chemical signals into an electrical response. Recently solved agonist-bound and agonist-free structures greatly extend our understanding of these complex molecular machines. A key challenge to a full description of function, however, is the ability to unequivocally relate determined structures to the...

متن کامل

A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

Recent high resolution structures of several pentameric ligand-gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron-electron resonance (DEER) spectroscopy, and x-...

متن کامل

A gating mechanism of pentameric ligand-gated ion channels.

Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we...

متن کامل

Allosteric regulation of pentameric ligand-gated ion channels

Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 50  شماره 

صفحات  -

تاریخ انتشار 2005